www.mathsenligne.com

STI - 1N5 - DERIVATION D'UNE FONCTION EN UN POINT

EXERCICES 1B

EXERCICE 1B.1

On considère la fonction : $f(x) = \frac{x^2 - 8x + 15}{x - 3}$

- **a.** Vérifier que f(3) n'existe pas.
- **b.** Compléter le tableau suivant :

x	4	3,5	3,1	3,01	3,001
f(x)					

c. En déduire *expérimentalement* la limite de *f* en 3.

$$\lim_{x \to 3} f(x) =$$

EXERCICE 1B.2

On considère la fonction : $g(x) = \frac{3}{2x-1} + \frac{6x}{1-2x}$

- **a.** Vérifier que f(0,5) n'existe pas.
- **b.** Compléter le tableau suivant :

х	1	0,6	0,55	0,51	0,501
g(x)					

c. En déduire *expérimentalement* la limite de *g* en 0,5.

$$\lim_{x \to 0,5} g(x) =$$

EXERCICE 1B.3

On considère la fonction : $h(x) = \frac{\sin x}{x}$ (x est une mesure d'angle en radians)

- **a.** Vérifier que h(0) n'existe pas.
- **b.** Compléter le tableau suivant :

x	1	0,5	0,1	0,01	0,001
h(x)					

c. En déduire *expérimentalement* la limite de h en 0.

$$\lim_{x \to 0} h(x) =$$

EXERCICE 1B.4

On considère la fonction : $k(x) = \frac{x}{\sqrt{x}}$

- **a.** Vérifier que k(0) n'existe pas.
- **b.** Compléter le tableau suivant :

x	1	0,5	0,1	0,01	0,001
k(x)					

c. En déduire *expérimentalement* la limite de k en 0.

$$\lim_{x \to 0} k(x) =$$