EXERCICE 2B.1

Dans chaque cas, dire s'il s'agit d'une épreuve de Bernoulli.	Epreu Berno	
a. Dans une usine qui fabrique des moteurs électriques, qui peuvent être de trois types : 1,5 Volts, 9 Volts ou 12 Volts. On choisit un moteur au hasard dans la production.		
b. On lance en l'air une pièce, et on observe la face apparente une fois qu'elle retombe au sol.		
c. Dans un lycée, on choisit un élève au hasard, et on s'intéresse à son mois de naissance.		
d. Dans un lycée, on choisit un élève au hasard, et on s'intéresse à son sexe.		
e. Dans un lycée, on choisit un élève au hasard, et on s'intéresse au fait qu'il ait réussi (ou pas) son bac.		

EXERCICE 2B.2

On lance successivement 5 fois une pièce, et on note dans l'ordre les 5 résultats obtenus (P ou F).

1. Dresser la liste des 32 combinaisons possibles

PPP	PPF	PFP	PFF	FFF	FFP	FPF	FPP

- 2. On admet que toutes les combinaisons sont équiprobables.
 - a. Quelle est la probabilité de l'événement « j'obtiens la combinaison P F P F P » ?
- **b.** Quelle est la probabilité de l'événement « j'obtiens exactement deux FACE » ?
- c. Quelle est la probabilité de l'événement « j'obtiens au moins deux FACE » ?
- **d.** Quelle est la probabilité de l'événement « j'obtiens au moins un FACE » ?

EXERCICE 2B.3

Dans une clinique, 48% des enfants qui naissent sont des filles (les autres sont évidemment des garçons). Aujourd'hui, quatre bébés sont nés. On admettra que cela revient à reproduire 4 fois une épreuve de Bernoulli dont le « succès » est « le bébé est une fille », et dont la probabilité est 0,48.

- **1.** Construire l'arbre pondéré correspondant à cette situation.
- 2. Déterminer les probabilités des événements suivants (on arrondira les résultats au millième) :
 - A = « les quatre bébés sont des filles »
 - B = « il y a deux filles et deux garçons »
 - C = « il y a exactement une fille parmi les quatre bébés »

EXERCICE 2B.4

Lors de la séance de tirs au but à la fin d'un match de football, il a été établi que le taux de réussite d'un tir est de 77%. On admettra que cela revient à reproduire 5 fois une épreuve de Bernoulli dont le « succès » est « le tir au but est réussi », et dont la probabilité est 0,77.

- 1. Construire l'arbre pondéré correspondant à cette situation.
- **2.** On appelle X le nombre de tirs au but marqués lors de la séance (donc 5 tirs en tout).
 - **a.** Donner la loi de probabilité de la variable aléatoire X sous forme d'un tableau.
- **b.** Calculer l'espérance de X. Interpréter ce nombre.
- 3. A l'aide du tableau précédent, déterminer la probabilité des événements suivants :
 - A = « tous les tirs au but sont réussis »
 - B = « tous les tirs au but sont manqués »
 - C = « au moins 3 tir sont réussis »

N