EXERCICE 2C.1

Dans la poule qualificative d'une compétition de football, il y a 4 pays : la France (F), l'Angleterre (A), l'Italie (I) et la Belgique (B).

a. Ecrire tous les classements possibles entre ces 4 équipes (24 possibilités)

_		, cou	5 105	Cius	55011	Cito	PUS	Sibic	<u>.5 CI</u>		. eqe	iipcs	_ '	PO3	$\frac{1}{1}$					
	1 ^{er}		-										•				•			
	2 ^{ème}																			
	3 ^{ème}		-																	
	4 ^{ème}		-																	

b. Seuls les deux premiers sont qualifiés. Ecrire toutes les combinaisons de 2 équipes possibles (sans tenir compte de l'ordre puisque « heu... à partir de là... voilà... je crois que ... bon, voilà... l'important c'était la qualification... voilà... »

EXERCICE 2C.2

Dans la poule qualificative d'une compétition de rugby, il y a 5 pays : la France (F), l'Angleterre (A), l'Italie (I), le Canada (C) et la Belgique (B).

Seuls les deux premiers sont qualifiés. Ecrire toutes les combinaisons de 2 équipes possibles.

RAPPEL:

Le nombre de **combinaisons** (sans tenir compte de l'ordre) de **p** éléments parmi **n** est :

$$C_n^p = {n \choose p} = \frac{n!}{(n-p)!p!}$$

A la machine :

1. saisir n

2. math/PRB/Combinaison

3. saisir **p**

4. Enter

EXERCICE 2C.3

A l'aide de la machine, compléter ce tableau où chaque case contient la valeur $\binom{\mathbf{n}}{\mathbf{p}}$

p n	1	2	3	4	5	6	7	8
1		>>	> <	><	><	><	><	>>
2			> <	><	><	><	><	>>
3				><	><	><	><	>>
4					><	><	><	>>
5						><	><	>>
6							><	>>
7								> <
8								

EXERCICE 2C.4

- **a.** Au poker, chaque joueur recoit 5 cartes choisies parmi 52. Calculer le nombre de combinaisons possibles.
- **b.** On admettra que parmi ces combinaisons, il y en a :
 - 4 quintes flush royales
 - 624 carrés
 - 54 912 brelans
 - -1 098 240 paires

Calculer la probabilité d'obtenir chacune de ces combinaisons.

EXERCICE 2C.5

Au tiercé, on parie sur les 3 premiers chevaux arrivés parmi les 15 au départ, sans tenir compte de leur ordre.

Calculer le nombre de combinaisons possibles.