Dans tous ces exercices, le plan est muni d'un repère (O, I, J).

EXERCICE 3B.1

Sans effectuer le moindre calcul, et uniquement en étudiant la proportionnalité des coordonnées, dire si les vecteurs suivants sont colinéaires (si c'est le cas, on justifiera par l'égalité $\vec{u} = \overset{\rightarrow}{\lambda v}$ ou $\vec{v} = \overset{\rightarrow}{\lambda u}$):

a.
$$\stackrel{\rightarrow}{u} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 et $\stackrel{\rightarrow}{v} \begin{pmatrix} 8 \\ 6 \end{pmatrix}$ sont-ils colinéaires ?

b.
$$\stackrel{\rightarrow}{u} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 et $\stackrel{\rightarrow}{v} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ sont-ils colinéaires ?

c.
$$\stackrel{\rightarrow}{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 et $\stackrel{\rightarrow}{v} \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ sont-ils colinéaires ?

d.
$$\vec{u} \begin{pmatrix} 8 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ 8 \end{pmatrix}$ sont-ils colinéaires ?

e.
$$\stackrel{\rightarrow}{u} \begin{pmatrix} 10 \\ -15 \end{pmatrix}$$
 et $\stackrel{\rightarrow}{v} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ sont-ils colinéaires ?

EXERCICE 3B.2

En utilisant le critère $\langle xy' - x'y = 0 \rangle$ dire si les vecteurs suivants sont colinéaires :

a.
$$\stackrel{\rightarrow}{u} \left(\begin{smallmatrix} 6 \\ -10 \end{smallmatrix} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{smallmatrix} -3 \\ 5 \end{smallmatrix} \right)$ sont-ils colinéaires ?

b.
$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 12 \\ 16 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} 30 \\ 40 \end{array} \right)$ sont-ils colinéaires ?

c.
$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 5 \\ -7 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} 21 \\ 15 \end{array} \right)$ sont-ils colinéaires ?

d.
$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 21 \\ 28 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} 15 \\ 21 \end{array} \right)$ sont-ils colinéaires ?

e.
$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} 24 \\ -18 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} -16 \\ 12 \end{array} \right)$ sont-ils colinéaires ?

EXERCICE 3B.3

On considère les points suivants :

a. Les vecteurs \overrightarrow{AC} et \overrightarrow{ED} sont-ils colinéaires ?

b. Les vecteurs \overrightarrow{FB} et \overrightarrow{EF} sont-ils colinéaires ?

c. Les vecteurs AB et BG sont-ils colinéaires ?

d. Les vecteurs \overrightarrow{FC} et \overrightarrow{EG} sont-ils colinéaires ?

e. Les vecteurs AE et ED sont-ils colinéaires ?

EXERCICE 3B.4

Dans chaque cas, calculer la valeur de \boldsymbol{x} pour que les vecteurs \overrightarrow{u} et \overrightarrow{v} soient colinéaires.

a.
$$\stackrel{\rightarrow}{u} \left(\begin{array}{c} x \\ 2 \end{array} \right)$$
 et $\stackrel{\rightarrow}{v} \left(\begin{array}{c} -4 \\ 1 \end{array} \right)$

a.
$$\overrightarrow{u} \begin{pmatrix} x \\ 2 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ **b.** $\overrightarrow{u} \begin{pmatrix} 2+x \\ -3 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

EXERCICE 3B.5

On considère les points :

A(2; -3) B(
$$\dot{5}$$
; -1) M(x; 1) N(-4; y)

- **a.** Pour quelle valeur de x les vecteurs \overrightarrow{AB} et \overrightarrow{AM} sont colinéaires ?
- **b.** Pour quelle valeur de y les vecteurs \overrightarrow{AB} et \overrightarrow{BN} sont colinéaires?

EXERCICE 3B.6

On considère les 5 points A, B, C, D et E, qui permettent de définir les vecteurs suivants :

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \qquad \overrightarrow{AD} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$\overrightarrow{AE} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \qquad \overrightarrow{BC} \begin{pmatrix} 5 \\ -1 \end{pmatrix} \qquad \overrightarrow{BD} \begin{pmatrix} -1 \\ -4 \end{pmatrix} \qquad \overrightarrow{BE} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$\overrightarrow{CD} \begin{pmatrix} -6 \\ -3 \end{pmatrix} \qquad \overrightarrow{CE} \begin{pmatrix} -1 \\ 3 \end{pmatrix} \qquad \overrightarrow{DE} \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

a. Les points A, B et C sont ils alignés ?

b. Les droites (AE) et (CD) sont elles parallèles ?

c. Les points A, C et D sont ils alignés ?

d. Les droites (AD) et (CE) sont elles parallèles ?

e. Les points A, B et E sont ils alignés ?

f. Les droites (BE) et (AC) sont elles parallèles ?

EXERCICE 3B.7

a. Les points A(3; 2), B(7; 3) et C(15; 5) sont-ils alignés?

b. Les points D(-31; 12), E(-10; -3) et F(18; -22) sont-ils alignés?

EXERCICE 3B.8

On donne les quatre points :

EXERCICE 3B.9

On considère le triangle ABC tel que :

I et J sont les milieux respectifs de [AB] et [AC].

a. Les droites (IJ) et (BC) sont-elles parallèles ?

b. Ce résultat était-il prévisible ? Pourquoi ?

EXERCICE 3B10

On considère le triangle ABC tel que :

Soit M le point tel que $\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB}$.

Soit N le point tel que $\overrightarrow{AN} = \frac{1}{3} \overrightarrow{AC}$.

Démontrer que les droites (MN) et (BC) sont parallèles.